Efficient Reliable Broadcast for Commodity Clusters

Raymond Wong and Cho-Li Wang

Department of Computer Science and Information Systems The University of Hong Kong

What is a cluster?

A cluster is a type of parallel or distributed processing system, which consists of a collection of interconnected <u>stand-alone</u> <u>computers</u> cooperatively working together as a <u>single</u>, integrated computing resource. -- IEEE TFCC

Efficient Reliable Broadcast

- Efficient clustering requires efficient networking for tightly coupling all resources.
- Improving network performance helps improving performance in cluster computation.
- Efficient Reliable Broadcast : Let s do all together the most basic synchronization and data movement operation.

Main objectives

- To achieve the fastest broadcast in a commodity SMP cluster connected by a network with hardware broadcast.
- Reduce resource consumptions:
 - Computation: e.g., CPU cycles Iow-latency
 - Memory: e.g., send/receive buffers
 - Network: e.g., avoid redundant traffic

You can consider the collective operation as a "fat" communication command.

Outline

Background
Push-Pull Messaging
Hardware Broadcast
Performance Evaluation
Conclusions

Tackling the Problem...

- Theoretical broadcast studies have focused on the delivery strategy of packets based on some abstract model
 - **Postal** (1992) : A. Bar-Noy [2]
 - Lopsided Trees (1997) : Golin et. al. , [7]
 - LogP (1993), Karp, [9] (Also, Subramonian s multiple-item broadcast in LogP model)
 - Star Graph (1997): Y.C. Tseng, et. al., [14].
 - Hypercube, Mesh, Tori: Survey paper [McKinley: 1995]
- Efficient in terms of complexity.
- Could not be practically implemented.

Tackling the Problem...

- Broadcast algorithms in "message" level:
 - BM SP2 (MPL): Abandah (U. of Michigan), [IPPS 96]
 - InterCom Project (iCC library, INTEL Paragon, 1995): Mitra, et., al. (short, long, hybrid)
 - MPICH: Gropp, et. AI, (linear, tree-based) [6]
- To high level good portability
- Cannot take advantage of underlying system features

Tackling the Problem...

- Hardware broadcast is efficient. We adopt it.
- But research issues are,
 - How to utilize the hardware broadcast operation in user-level for efficient data movement?
 - Transferring broadcast packets is not reliable. How to make it reliable?
 - Single "fat" packet for multiple nodes. What is the delivery strategy?

Push-Pull Messaging [17] : Concept

Main Data Structures in DP

- (1) send queue stores pending send requests. send buffer stores the data.
- (2) receive queue stores pending receive requests. Packets received from the NIC are stored in receive buffer.
- (3) buffer queue and pushed buffer store pending incoming packets where their destinations in memory are not determined.
- Three queues can be accessed by both user and kernel threads.

Push-Pull Messaging: Architecture

Architecture (Receive)

Performance Optimization : DP-SMP, 1999 ICPP [17]

Cross-Space Zero Buffer
Address Translation Overhead Masking
Push-and-Acknowledge Overlapping

DP-SMP Performance

- Internode: (machine-to-machine)
 - Single-trip latency (ALR 4-way Pentium Pro. 200 MHz SMP, 66 MHz system bus, back-to-back) : 30.1 microseconds (8-byte message)
 - Bandwidth: 12.1 MB/s (Digital DEC 21140A Fast Ethernet) at 40KB message
- Intranode: (process-to-process within the same node)
 - Single-trip latency : 7.5 microseconds (8-byte message)
 - Bandwidth: 350.9 MB/s at 40KB message

Directed Point abstraction model [10]

Broadcast: traditional high-level implementation

- Use a sequence of point-to-point communication.
- Simple, but it cannot be fully optimized for the performance.
 - Reliable channels are maintained independently. Each channel may keep transmission and reception buffers.
 - Poor scalability: the number of transmission and reception buffers in the root node increases as the size of the cluster increases.
 - Extra synchronization overheads incur while switching from channel to channel.

New Data Structures

- Enhanced Queue Architecture (EQA)
 - Allows multiple senders to share one single queue and buffer properly.
 - An entry in a queue and buffer could be retrieved by many senders which linked to the queue and buffer.
- Light-weight Directed Point (LDP)
 - LDP = DP without buffers.
 - LDP stores pointers which point to appropriate BUF in a DP.

Enhanced Queue Architecture

Broadcast with EQA

Two Hardware-based Broadcast Algorithms

(1) Simple Broadcast.

- Packets are (H/W) broadcast one by one.
- Flow control: go-back-n protocol -- controlled by DP (HMS)
- Packets may be lost if the destination buffers are not allocated due to the late receive operation.
- Retransmission: Lost packets will be re-sent (use point-to-point operation) according to transmission records stored in LDP (LMS)

Two Hardware-based Broadcast Algorithms

(2) Push-Pull Broadcast.

- Push phase: a portion of the broadcast message is pushed to all the leaf nodes.
- **Pull phase:** the source DP broadcasts the remaining packets to all DPs one by one.
 - Point-to-point communication is used to re-send the lost packets during the pull phase based on a go-back-n protocol.

Performance Evaluation

Cluster configuration:

- 8 x Intel MP1.4-complaint SMP machines.
- Each consisted of 2 Intel Celeron 450 MHz processors with 128 Mbytes memory.
- Connected by Fast Ethernet.
- OS: Linux 2.2.1

Broadcast algorithms tested:

- Simple Broadcast (SBCAST)
- Push-Pull Broadcast (PPBCAST)

Broadcast Latency Test

Broadcast Latency Comparison

Parallel Ray Tracing

Using MPIPOV by ParMa² with MPI/DP-SMP

Conclusions

- Using hardware broadcast feature, single "fat" packet could be received by a number of attached hosts at the switch.
- Compare to multiple "unicast" packet
 - Larger bandwidth
 - Shorter latency
- With EQA, the *computation*, *memory* and *network* resources can be utilized more efficiently.

Future Works

- Develop more efficient reliable protocols on larger cluster sizes.
- Incorporation of the hardware broadcast facility with other parallel applications:
 - Software DSM : JUMP-DP
 - N-Body simulation
 - Cluster-based Web Caching : fast lookup
 - Search Engine: broadcast queries
 - Performance benchmarking software

The End

The Systems Research Group http://www.srg.csis.hku.hk/

Department of Computer Science and Information Systems The University of Hong Kong