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Abstract

In this paper, we focus on the practical issues of

designing e�cient complete exchange algorithms on a

commodity cluster interconnected by a non-blocking

crossbar switch. Four complete exchange algorithm-

s, including, shift exchange, pairwise exchange, group

shu�e exchange and synchronous shu�e exchange al-

gorithms are studied and tested on a cluster platfor-

m. These algorithms feature their own communication

schedule to avoid node and switch contention so as to

fully utilize the available bandwidth. Both the analyt-

ical and measured results show that the synchronous

shu�e exchange algorithm can achieve the best perfor-

mance. It can reach 97% of the available bandwidth

in our tests; while the group shu�e exchange performs

almost as good as the synchronous shu�e exchange al-

gorithm but scales better under the Head-Of-Line phe-

nomenon. Performance studies of the four algorithms

on both input-bu�ered and shared-bu�ered switches

are also reported.

Keywords: complete exchange, all-to-all personalized

communication, cluster computing, head-of-line

1 Introduction

Complete exchange, also known as all-to-all person-

alized communication, is a collective operation takes

place with a set of processes, and each process has a

distinct set of data to transmit to every other process

in the set. To minimize the communication delay, all

processes are actively participating in the communi-

cation. It is known to be the most stringent commu-

nication requirement imposed on the interconnection

network.

Complete exchange operation has been extensively

studied in the past. Most of the studies are focused

on designing communication schedules to avoid con-

tention delay induced by the topological constraints of
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the underlying networks, such as hypercubes [1], mesh-

es [7], tori [9], fat-trees [6], multistage interconnection

networks [11] and multi-dimension networks [2]. In

recent years, clusters become an important stream in

high-performance computing. They are usually built

on switch-based interconnects like Fast/Gigabit Eth-

ernet, Scalable Coherent Interface (SCI) and Myrinet.

These switches provide �exibility in network design,

and particularly, some technologies even support non-

blocking switching capability up to a few hundred n-

odes [3].

Theoretically, connecting all nodes via a single non-

blocking router switch provides optimal performance.

However, contention still exists if message exchanges

are not well scheduled, e.g. contention for the same

outgoing port. Furthermore, the distributed nature

of clusters cannot a�ord to have a lock-step sched-

ule as synchronization cost on these platforms is high,

since they are implemented by software means. Be-

sides, the bu�ering mechanism used within the switch

could hinder its actual performance. While there are

many variations in switch architectures, most switch-

es fall into one or a combination of three basic types:

input-bu�ered, output-bu�ered and shared-bu�ered.

With the input-bu�ered architecture, incoming

packets are queued in bu�ers, one per input port.

This is the simpliest design as the internal speed of

the bu�er only operates at the same speed as the in-

put/output links. However, it is known to have the

Head-Of-Line (HOL) blocking problem. Packets block

at the head of the queue also block the packets behind

them, even if some of these packets are destined for

idle output ports. By using queuing analysis, HOL

blocking is shown to reduce throughput to 58% even

under uniform tra�c.

While for the other two architectures, output-

bu�ered and shared-bu�ered, they do not su�er from

the HOL problem and thus support higher through-

put than input bu�ered switch. However, due to tech-

nological constraints, the performance of the bu�ers



must be fast enough to sustain simultaneous access

[10], and this requires more complex and stringent de-

sign.

In this paper, we focus on the practical issues of

achieving optimality for the complete exchange op-

eration on a commodity cluster interconnected by a

non-blocking network. Instead of having a contention-

free schedule at the message level, we construct a

contention-free schedule at the packet level with no

explicit synchronization is required.

The rest of the paper is organized as follows. Sec-

tion 2 lays down the architecture model of the cluster-

s, which becomes the foundation of our analysis. In

section 3, we present and analyze various communi-

cation schedules for the complete exchange operation.

Section 4 contains our experimental analysis. Finally,

conclusions are presented in section 5.

2 System Model

In our model, a cluster is de�ned as a collection

of autonomous machines that are interconnected by

a global router switch and assumes fully-connected.

Each node can send and receive one data packet in

one communication step. For the router switch, we as-

sume it is a packet-switched, full duplex, synchronous,

pipelined network, with cut-through feature. Bu�er-

s are provided to resolve output con�icts, but the

amount of bu�ers is assumed to be �nite.

To analyze the performance of those communica-

tion schedules, cost formulae are constructed based on

our communication model [8]. Under no con�ict, the

point-to-point communication cost is encapsulated by

the following cost formula,

Tptp(M) = Os + (k � 1)g + L+Or + Ur (1)

where

� Tptp(M) represents the total time spent on a

point-to-point communication of transfering a M-

byte message between two user processes on dif-

ferent nodes;

� k = M

b
, corresponds to the fragmentation of a M-

byte message to k data packets of size b bytes,

usually b = mtu for optimal performance;

� Os stands for the software overhead associated

with the send process for sending a b-byte packet;

� Or and Ur stands for the software overhead in-

duced by the asynchronous reception of a b-bytes

packet; in which, Or captures the costs of all k-

ernel events such as interrupt and memory copy,

while Ur captures the cost of user-space events

such as data processing and high-level protocol

handling;

� gs and gr encapsulate the minimum time between

consecutive injection or reception of b-byte pack-

ets to or from the network by the communica-

tion hardware; for a homogenous cluster, we can

generally assume that gs � gr and simplify the

expression by g = max(gs; gr);

� L is the network latency of moving the b-byte

packet from the physical memory of the source

node to the physical memory of the destination

node;

To simplify the expression, let Tw = Os + L � g +
Or + Ur, and the point-to-point communication cost

becomes Tptp(M) = kg + Tw.

3 Complete Exchange Algorithms

Based on the system model, each node is capable to

send and/or receive a message in one time unit, such

that (Os + Or + Ur) < g < L. With this capability,

a process can actively send and receive at the same

time, thus can fully utilizes the communication net-

work. To simplify the analysis, we assume that each

data block corresponds to k data packets. So the mini-

mum amount of packets being sent and received in the

complete exchange operation per process is 2k(p� 1)
packets or 2kb(p � 1) bytes if each data packet is of

size b bytes.

As the minimal time in sending or receiving a packet

of size b bytes is bounded by the send gap (gs) and re-

ceive gap (gr), and each machine can inject or receive

no more than one packet within this gap, so we de-

duce that the minimal time required for the complete

exchange operation under such a cluster communica-

tion abstraction is

Tata = Os +max((k(p� 1)� 1)gs; (k(p� 1)� 1)gr)

+L+Or + Ur

= k(p� 1)g + Tw (2)

Thus, any solution to the k -items complete ex-

change operation on the cluster would be optimal if

it takes Tata time units to �nish the operation. The

necessary conditions to satisfy the above optimality

are:

1. Each data packet is being sent directly to the tar-

get node without detour.

2. Each cluster node is actively sending and receiv-

ing the data packets without network stalling dur-

ing the whole course of operation.



3.1 Shift Exchange

This algorithm is the simplest way to schedule com-

munications without node contention. It takes p-1

rounds, and during each round, each process sends out

k items to a partner, and receives k items from another

partner, which is determined by a shift pattern.

Algorithm 1 Shift Exchange

for i = 1 to p-1 do

from_partner = (myid+p-i) mod p

to_partner = (myid+i) mod p

for (s=1 to k) & (r=1 to k) in parallel do

if (send_item_to(to_partners , to) = success) then

inc s

if (recv_item_from(from_partnerr , from) = success) then

inc r

end

end

As depicted in Alg. 1, during each round, each node

uniquely maps to one sendto and recvfrom partners,

thus no node contention is achieved. However, the non

network-stalling condition is not enforced under this

scheme. Although there is no explicit synchronization

appeared between consecutive rounds and both send

and receive operations are of non-blocking semantics,

the p-1 rounds have an implicit synchronization cost

that introduces bubbles to the network pipelines. For

example, in each round, both the send and receive

channels are idle until the �rst byte of the �rst packet

is being injected into the network. Similarly, after re-

ceiving the last byte of the last packet, both channels

are idle until the cluster node has �nished handling

the last packet of this round. The predicted commu-

nication cost for this complete exchange operation is

Tshift = (p� 1)(Os + kg + L� g +Or + Ur)

= kg(p� 1) + (p� 1)Tw (3)

From the cost formula, we notice this algorithm is

not optimal as there is a messaging overhead which is

proportional to the number of cluster nodes.

3.2 Pairwise Exchange

Unlike shift exchange, nodes are pairing up for di-

rect exchange in each round. Traditionally, the pairing

pattern is based on the Exclusive Or (XOR) binary

operation. The communication cost of this algorith-

m coincides with that of the shift exchange as both

algorithms involve the same number of message trans-

missions and receptions, such that from the analytical

viewpoint, we have Tpair = Tshift.

The major drawback of the XOR bitwise operation

is the requirement of p = 2X in order to symmetrically

pairing up all the nodes. For the case with p 6= 2X , the

Procedure EdgeColor(round , myid, p)

�
0 = odd(p) ? p : p-1

if (myid < �
0) then

v = (round + �
0 - myid) mod �

0

else

v = odd(round) ? (( round+�
0

2
) mod �

0) : round

2

if (odd(p) AND v = myid) then

return -1 // idle for this round

else if (v = myid) then

return �
0

else

return v

Figure 1: Edgecolor Pairing Algorithm

number of rounds becomes 2dlog2pe�1, and during each
round, not all the nodes �nd a matching partner. The

solution to our pairing problem is to �nd an algorith-

m for edge-coloring the complete graph. Due to its

uniqueness, there exists a simple numerable solution

similar to the XOR operation for p � 3, and is being

described and proved in [4]. By incorporated this al-

gorithm (Figure 1) to the pairwise exchange scheme,

we have the generalized pairwise exchange algorithm.

Under this mapping scheme, the performance is on-

ly slightly deteriorated with p communication rounds

for all odd cases, instead of having p-1 communication

rounds for all even cases.

3.3 Synchronous Shu�e Exchange

The above two algorithms have a messaging over-

head which is depended on the number of communica-

tion rounds. If k is small and p is large, we would

expect to have poor performance. A simple solu-

tion to this problem is by reduction of this overhead.

The synchronous shu�e schedule (Alg. 2), e�ective-

Algorithm 2 Synchronous Shu�e Exchange

for (s=1 to k) & (r=1 to k) in parallel do

for (is = 1 to p-1) & (ir = 1 to p-1) do

to = (myid+is) mod p

from = (myid+p-ir) mod p

if (send_item_to(tos, to) = success) then

inc is

if (recv_item_from(fromr, from) = success) then

inc ir

end

end

ly multiplexes all the p-1 messages in a single round

by applying a contention-free schedule at the pack-

et level. Based on that packet-level scheduling, at a

particular instant ij (assume logically synchronized),

each process is sending the jth packet for the process

(myid+i)%p directly. As each process can uniquely

match to di�erent process at this instant, it guaran-

tees no two packets are directed to the same desti-



nation at the same instant, thus no node contention.

Therefore, the predicted communication cost for this

complete exchange operation is

Tsyn = Os + kg(p� 1) + L� g +Or + Ur

= k(p� 1)g + Tw (4)

From the cost formula, we notice that the messaging

overhead is kept constant, and is not depended on p

or k. Regards to the communication complexity, this

cost formula matches exactly to our optimal formula

Tata. This shows that the scheme can e�ectively utilize

the send and receive channels by multiplexing all the

messages seamlessly to a single pipeline �ow without

unnecessary synchronization delay.

3.4 Group Shu�e Exchange

If every operation is executed on schedule, and the

network resources are scalable, then, the permutation

scheme of the synchronous shu�e exchange can be �n-

ished in minimal time. However, in reality, logical

synchronization is not enforced together with the dis-

tributed nature of the cluster system, random delays

between events could break this uniformity and result

in �transient hot-spot� in the switch.

When two or more packets contend for the same

output link, or for a shared internal link, blocking of

con�icting packets would result in routing delay. Ob-

served that the more packets are targeting to the same

output link, the higher chance of having con�icts even

under a uniform pattern. We may expect that the syn-

chronous shu�e scheme could su�er on clusters with

input-bu�ered switches due to the HOL problem.

Algorithm 3 Group Shu�e Exchange

round =
�
p�1

!

�
// assume p is even

for i = 1 to round do

group = [ ]
for j = 1 to ! do
group[j ] = EdgeColor((i-1)*!+j,myid,p)

end

for (s =1 to k) & (r =1 to k) in parallel do

for (js = 1 to !) & (jr = 1 to !) do

to = group[js]

from = group[jr]

if (send_item_to(tos, to) = success) then

inc js

if (recv_item_from(fromr, from) = success) then

inc jr

end

end

end

Group shu�e exchange algorithm (Alg. 3) is a

mixed approach that combines the pairwise exchange

and the synchronous shu�e exchange algorithms. The

main idea is to overcome the HOL problem but stil-

l achieving comparable performance as compared to

the synchronous shu�e scheme. In pure pairwise ex-

change scheme, packets appear in each input port are

destined to a unique outgoing port, thus HOL blocking

is rare even under input-bu�ered switch. However, in

the pairwise scheme, the startup overhead is linearly

proportional to the number of communication round-

s, which hinders its e�ciency. For the group shuf-

�e exchange, we reduce the number of communication

rounds to
�
p�1

!

�
. In each round, a processor is per-

forming a synchronous shu�e exchange with at most

! partners. The main idea of this scheme is to lim-

it the degree of fan-out (!) during individual shu�e

exchange phases, while keeping the number of commu-

nication rounds to minimal.

As this algorithm comprises of more communication

rounds, the startup overhead would be higher than

that of the synchronous shu�e scheme but lower than

the pairwise scheme. The predicted communication

cost for this algorithm is, (assume ! divides p-1)

Tgroup =
p� 1

!
(Os + kg! + L� g +Or + Ur)

= kg(p� 1) +
p� 1

!
Tw (5)

4 Experimental Results

Our experimental platform is a cluster consists of

16 standard PCs running Linux 2.0.36. Each node is

equipped with a 450MHz Pentium III processor with

512KB external L2 cache and 128MB of main memo-

ry. The interconnection network is the Fast Ethernet

driven by our Direct Point (DP) communication sys-

tem [5]. Each node includes a DEC21140-based ether-

net card and connects to a Fast Ethernet Switch. Two

IBM switches with di�erent internal architectures are

tested. One is the model 8275-326, which consists of 24

ports, supports virtual cut through switching, and is

being revealed as an input-bu�ered architecture. An-

other switch is the model 8275-416 that consists of

16 ports, supports store-and-forward switching, and is

being revealed as a shared-bu�ered architecture. We

have implemented the above algorithms on this clus-

ter platform and compare their performances with the

analytical formulae.

To evaluate the performance of these algorithms,

model parameters of our experimental cluster are re-

quired. Table 1 shows all the necessary model param-

eters for this cluster and are derived from the bench-

mark tests as described in [8]. We opt to use a constant

value for most of the parameters as all experiments are



Table 1: Model parameters for our cluster

parameters Os gs gr Or Ur L for 326 L for 416

Time (�s) 12.5 122 123 20 7 0.3387p+149 0.3413p+264

16 nodes (8275-326)
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Figure 2: Achievable bandwidth per node for di�erent

algorithms as compared to the optimal prediction on 8275-

326

conducted with a �xed size packet, which is the maxi-

mum payload (1492 bytes) available for a DP packet.

4.1 Complete Exchange Performance

We validate the optimality of these algorithms by

comparing the measured results with the optimal pre-

diction. Figure 2 shows the achieved bandwidth of

these algorithms for p=16 against di�erent message

sizes (k) ranges from 4 to 768 (data packets) on the

same cluster. The achieved bandwidth is a metric

which measures the e�ciency of the algorithm in u-

tilizing the network. This is calculated by dividing

the total data message sizes with the measured com-

munication time. The results show that for very long

message (large k), both shift exchange and pairwise

exchange are catching up with the performance of the

synchronous shu�e exchange and group shu�e ex-

change algorithms, but we still observe there are rela-

tive performance di�erences between these algorithms.

For messages of short length (small k), we notice there

are signi�cant di�erences between these algorithms.

As explained by their cost formulae, for small k, both

shift and pairwise exchanges perform poorly due to

the high messaging cost and the implicit synchroniza-

tion between communication rounds. On the other

hand, the synchronous shu�e and the group shu�e

exchanges e�ectively reduce these costs, and perform

much better even up to k=100.
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Figure 3: Comparison of performance between a virtual

cut through switch (326) and a store-and-forward switch

(416) on the synchronous shu�e and group shu�e algo-

rithms

4.2 Comparing Switching Mechanisms

Figure 3 shows the achieved bandwidth of the group

shu�e scheme and synchronous shu�e scheme for

p=16 on two switches. Generally, both switches have

the similar performance for long messages, so not

much di�erence between the cut through or store-and-

forward modes. But for short messages, we can see

their di�erence. If we cannot fully utilize the network,

we cannot e�ectively mask away the higher latency of

store-and-forward switching. This is being re�ected

by the slower performance of the group shu�e scheme

on both switches when they are working in store-and-

forward mode. Moreover, we see that the switch in-

ternal bu�ering mechanism does a�ect the overall per-

formance. The performance of the synchronous shuf-

�e exchange algorithm on the shared bu�ered switch

(416) is always better than the same algorithm on the

input bu�ered switch (326) with both packet forward-

ing modes.

4.3 E�ects on Problem Size k

We have compared the scalability of these algo-

rithms when operated on an input bu�ered switch

(326) with p=16 and !=5. For this test, an algo-

rithm is considered to stop operating when it fails to

terminate within reasonable time on a test of 50 itera-

tions, this re�ects there is considerably slowdown due



to the HOL blocking. Although synchronous shu�e

exchange has the best performance, it cannot continue

for k>512, such that the message length of each node is

of 746KB. While the performance of group shu�e ex-

change is only slightly less than the synchronous shuf-

�e exchange, it continues to operate sub-optimally un-

til k>2304 (around 3357KB). Lastly, we observe that

both pairwise exchange and shift exchange continue

to work for very large message length (around 2560),

but the performance drops dramatically as the total

communication bu�er size is approaching the machine

limit.

5 Discussion and Conclusions

Based on the architecture and communication mod-

el of cluster, we observe that to achieve optimal result,

the network pipes should be fully utilized. Any waiting

stage would stall the pipelines and decrease the overall

communication e�ciency. Pairwise exchange algorith-

m uniquely pairs up those cluster nodes in each com-

munication rounds and avoids node and switch con-

tentions. It works e�ciently when message size (i.e.,

k) is large. However, for exchanging small messages

on a large cluster, the waiting time incurred by each

communication round cannot be masked away and re-

sults in poor performance. The same problem appears

on the shift exchange algorithm. But the pairwise

exchange can outperform the shift exchange, as op-

timization technique such as piggyback acknowledge-

ment can be adopted in the pairwise exchange algo-

rithm to hide messaging latencies.

To avoid stalling the network, we need to com-

pletely remove all waiting time, and this is achieved

by the synchronous shu�e exchange algorithm. This

algorithm logically schedules the communication at

the packet level in a pattern that avoids both node

and switch contentions. As waiting time is removed,

those links are better utilized, and we can exchange

all the messages by minimal time, hence, achieved op-

timal. Theoretically, at the same instant, all packets

arrived to di�erent input ports are destined to dif-

ferent output ports according to our contention-free

schedule, therefore, this schedule should operate ef-

�ciently on any non-blocking network. However in

reality, since no global clock is implemented and the

operations are not lock-step synchronized. This shuf-

�e pattern could induce head-of-line blocking on the

input-bu�ered switch. To alleviate the problem, group

shu�e exchange is devised. This algorithm limits the

degree of fan out and introduces minimal waiting time

during the communication. From the measured results

we show that it performs almost as good as the syn-

chronous shu�e exchange algorithm but scale better

than the synchronous shu�e exchange.
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